

- Field Configurable Input Ranges for J, K, T, R, S, E, and B Type Thermocouples
- Eliminates Ground Loops
- Field Configurable Output Ranges: 0-5V, 0-10V, 0-1mA, 0-20mA and 4-20mA

Description

The G428 is a DIN rail mount, thermocouple input signal conditioner with 1800VDC isolation between input, output and power. The field configurable input and output offer flexible, wide ranging capability for J, K, T, R, S, E and B type thermocouples.

The G428 input can be configured for over 60 thermocouple temperature ranges (see Table 6). The output is linear to temperature and can be set for either 0-5V, 0-10V, 0-1mA, 0-20mA or 4-20mA.

Wide ranging, precision zero and span pots allow 50% adjustablity of offset and span turn-down within each of the ranges. For example, the 0-1000°C range could be offset and turned down to provide a 4-20mA signal representing 500-1000°C. Similarly, adjustment can be referenced to the output range. The example above could be used to provide a 12-20mA signal from a 750 to 1000°C temperature input.

Application

Three way isolation in the G428 completely eliminates ground loops from any source. Isolation protects expensive SCADA systems from ground faults and allows the noise reduction benefits of grounded thermocouples to be realized.

The G428 is equipped with cold junction compensation (CJC) circuitry to provide ice-point reference. Upscale or downscale thermocouple burnout detection is switch selectable.

High density DIN rail mounting offers an extremely compact solution to save valuable panel space.

Diagnostic LEDs

The G428 is equipped with front panel LEDs for INPUT (green), TROUBLE (yellow) and CAL OK (yellow). At start-up, both the INPUT and the CAL OK LEDs flash alternately for 10 seconds.

INPUT

This green LED is lit continuously when the input is within the specified range. In the full temperature range setting, for the overrange condition the LED flashes at 8Hz; for the under range condition it flashes at 4Hz. In a sub-range temperature setting, for the overrange condition the LED flashes at 1Hz; for the under range condition it flashes at 0.5Hz.

ULTRA SLIMPAK[®] G428-0001 T/C Input Field Configurable Isolator

> Provides an Isolated, Linearized DC Output in Proportion to a Thermocouple Input

- Ultra Slim Housing for High Density Installations
- Flexible Power Supply Accepts 9 to 30 VDC
- ASIC Technology for Enhanced Reliability
- RoHS Compliant

CAL OK

This yellow LED is continuously on when the device is calibrated.

TROUBLE

This yellow LED is off during the normal operation. Consult factory if this LED is on, indicating a microprocessor malfunction.

Configuration

The G428 offers 50% input zero and span adjustablity within each of the fullscale input ranges. Unless otherwise specified, the factory presets the Model G428 as follows:

Input:	J-type
Range:	0 to 500°C
Output:	4 to 20mA
Burn Out:	Upscale

The DC power input accepts any DC source between 9 and 30V; typically a 12V or 24VDC source is used (see Accessories).

For other I/O ranges, refer to Tables 1 through 6 and reconfigure switches SW1 and SW2 for the desired input type range and output.

WARNING: Do not change switch settings with power applied. Severe damage will result!

1. Choose the desired temperature range from Table 6, then use Table 1 and 2 to configure the switches (as described in the following steps) for thermocouple type and range.

2. With DC power off, position input switches 1 and 2 of SW2 for the desired burnout detection mode.

3. Set positions 4 through 10 of SW2 for the desired thermocouple range and type.

4. Set positions 1 through 8 of SW1 for the desired output signal. (Table 4)

Calibration

1. After configuring the dip switches, connect the input to a calibrated thermocouple source. Connect the output to the device (or a load approximately equivalent to the device) and apply power.

Note: To maximize thermal stability, final calibration should be performed in the operation installation, allowing approximately 1 to 2 hours for warm up and thermal equilibrium of the system.

2. Set the calibrator to the desired minimum input and adjust the zero potentiometer for the desired minimum output.

3. Set the calibrator to the desired maximum input and adjust the span potentiometer for the desired maximum output.

Table 2:

TC Type Range

4. Repeat steps 2 and 3, if necessary for best accuracy.

Table 5: G428 Thermocouple Accuracy

	•	-
TC Type	Temperature Range	Accuracy
J	-200 to 750 _i C (-328 to 1382 _i F)	+/-2.0 _i C (+/-3.6 _i F)
к	-200 to 140 _i C (-328 to -220 _i F)	+/-5.0 _i C (+/-9.0 _i F)
к	-140 to 1250 _i C (-220 to 2282 _i F)	+/-2.0 _i C (+/-3.6 _i F)
к	1250 to 1370 _i C (2282 to 2498 _i F)	+/-4.0 _i C (+/-7.2 _i F)
E	-150 to 1000 _i C (-238 to 1832 _i F)	+/-2.5 _i C (+/-4.5 _i F)
т	-150 to 400 _i C (-238 to 752 _i F)	+/-3.0 _i C (+/-5.4 _i F)
R	50 to 1760 _i C (122 to 3200 _i F)	+/-6.0 _i C (+/-10.8 _i F)
s	50 to 1760 _i C (122 to 3200 _i F)	+/-6.0 _i C (+/-10.8 _i F)
в	500 to 1820 _i C (932 to 3308 _i F)	+/-5.0 _i C (+/-9.0 _i F)

Table 1: G428 T/C Types				
Туре	SW2			
	8	9	10	
В				
E	•	•		
J				
К	•			
R				
S				
Т				
Key: ■ = 1 = 0	DN or	Clos	ed	

Table 3:

Burnout

Not Allowed

Downscale

Upscale

None Key: ■ = 1 = ON or Closed

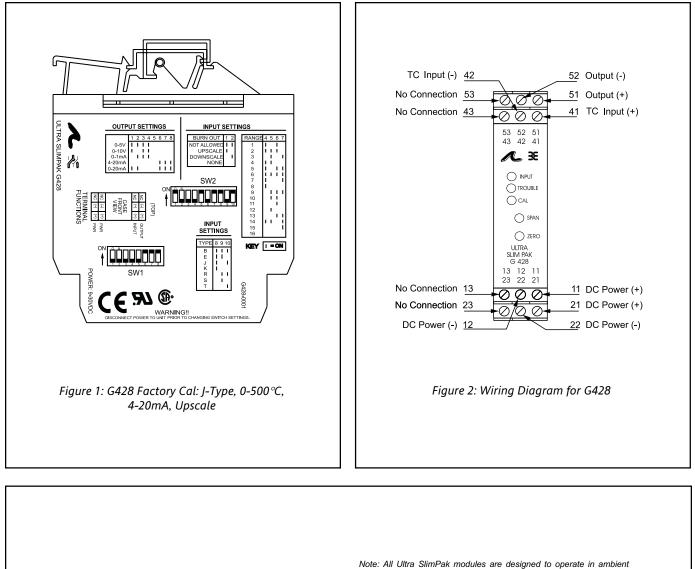
SW2

1 2

ł

G428 Range Settings SW2 Range 5 6 4 7 1 2 3 4 5 6 7 8 9 10 11 G428 Burnout Settings 12 13 14 15 16 Key: ■ = 1 = ON or Closed

Table 4:
G428 Output Settings


Output	SW1							
Output	1	2	3	4	5	6	7	8
0 to 5V								
0 to 10V			•					
0 to 1mA			•					
4 to 20mA								
0 to 20mA						•		
Key: ■ = 1 = ON or Closed								

,					
	6	500 to 1820; C (932 to 3308; F)			
	7	1000 to 1820; C (1832 to 3308; F)			
В	8	500 to 1000¡ C (932 to 1832¡ F)			
	11	500 to 1820; C (932 to 3308; F)			
	12	750 to 1000¡ C (1382 to1832¡ F)			
	2	-18 to 1000; C (0 to 1832; F)			
	3	-18 to 500i C (0 to 932i F)			
	4	-18 to 250i C (0 to 482i F)			
	5	-18 to 125 _i C (0 to 257 _i F)			
	8	500 to 1000¡ C (932 to 1832¡ F)			
Е	9	250 to 500i C (482 to 932i F)			
E	10	125 to 250i C (257 to 482i F)			
	12	750 to 1000¡ C (1382 to 1832¡ F)			
-	13	375 to 500i C (707 to 932i F)			
	14	-150 to 750; C (-238 to 1382; F)			
	15	-150 to 250i C (-238 to 482i F)			
	16	-150 to 0i C (-238 to 32i F)			
	2	-18 to 750; C (0 to 1382; F)			
	3	-18 to 500i C (0 to 932i F)			
	4	-18 to 250 _i C (0 to 482 _i F)			
	5	-18 to 125 _i C (0 to 257 _i F)			
	8	500 to 750i C (932 to 1382i F)			
J	9	250 to 500i C (482 to 932i F)			
	10	125 to 250i C (257 to 482i F)			
	13	375 to 500i C (707 to 932i F)			
	14	-200 to 750; C (-328 to 1382; F)			
	15	-200 to 250; C (-328 to 482; F)			
	16	-200 to 0 $_i$ C (-328 to 32 $_i$ F)			

Temperature Range

Table 6: G428 Thermocouple Ranae Settinas

TC Type	Range	Temperature Range
	1	-18 to 1370; C (0 to 2498; F)
	2	-18 to 1000; C (0 to 1832; F)
	3	-18 to 500; C (0 to 932; F)
	4	-18 to 250 C (0 to 482 F)
	5	-18 to 125; C (0 to 257; F)
	7	1000 to 1370; C (1832 to 2498; F)
к	8	500 to 1000; C (932 to 1832; F)
n	9	250 to 500; C (482 to 932; F)
	10	125 to 250; C (257 to 482; F)
	12	750 to 1000; C (1382 to1832; F)
	13	375 to 500; C (707 to 932; F)
	14	-200 to 750; C (-328 to 1382; F)
	15	-200 to 250; C (-328 to 482; F)
	16	-200 to 0; C (-328 to 32; F)
	1	50 to 1760; C (122 to 3200; F)
	2	50 to 1000¡ C (122 to 1832¡ F)
	3	50 to 500¡ C (122 to 932¡ F)
	4	50 to 250j C (122 to 482j F)
	7	1000 to 1760; C (1832 to 3200; F)
R, S	8	500 to 1000¡ C (932 to 1832¡ F)
	9	250 to 500i C (482 to 932i F)
	10	125 to 250; C (257 to 482; F)
	12	750 to 1000¡ C (1382 to 1832¡ F)
	13	375 to 500; C (707 to 932; F)
	3	-18 to 400; C (0 to 752; F)
	4	-18 to 250i C (0 to 482i F)
	5	-18 to 125; C (0 to 257; F)
т	9	250 to 40i C (482 to 752i F)
	10	125 to 250; C (257 to 482; F)
	13	375 to 400; C (707 to 752; F)
	14	-150 to 400; C (-238 to 752; F)
	15	-150 to 250; C (-238 to 482; F)
	16	-150 to 0i C (-238 to 32i F)

Note: All Ultra SlimPak modules are designed to operate in ambient temperatures from 0 to 55°C when mounted on a horizontal DIN rail. If five or more modules are mounted on a vertical rail, circulating air or model HS01 Heat Sink is recommended. Refer to HS01 Technical Bulletin (#721-0549-00) or contact the factory for assistance.

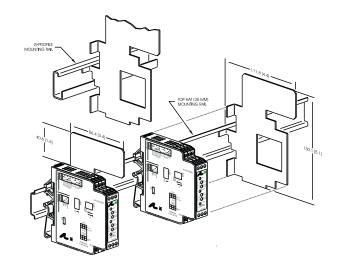


Figure 3: Mounting Multiple Modules

Specifications

Inputs:

Sensor Types: J, K, T, R, S, E, B Input Ranges: See Table 6. Impedance: >1M Ohms Bias Current (burnout detection): <1.5microamp Overvoltage: ±10V differential Common Mode (Input to Gnd): 1800VDC, max. Zero and Span Adjustability: 50% of any selected range

Output:

Voltage

Output: 0-5V, 0-10V Source Impedance: <10 Ohms Drive: 10mA, max.

Current

Output: 0-1mA, 0-20mA, 4-20mA Source Impedance: >100K Ohms Compliance:

0-1mA; 7.5V, max.(7.5K Ohms) 0-20mA; 12V, max.(600 Ohms) 4-20mA; 12V, max.(600 Ohms)

Accuracy (Including Linearity, Hysteresis): see Table 5 Stability: +0.04% of the maximum full scale range per °C change in ambient temperature, maximum. Response Time (10 to 90%): 500mSec., typical. **Common Mode Rejection:** DC to 60Hz: 120dB **Isolation:** 1800VDC between input, output & power. EMC Compliance (CE Mark): EMC: EN61326-1:2013 Safety: EN61010-2:2013 **LED Indication:** INPUT (Green): continuously on if input is within selected range, flashes otherwise TROUBLE (Yellow): off during normal device operation. CAL OK (Yellow): continuously on in normal device

operation

Thermocouple Burnout Detect:

Field configurable upscale, downscale, or disabled

Humidity (Non-Condensing):

Operating: 15 to 95% @ 45°C Soak: 90% for 24 hours @ 65°C

Temperature Range:

Operating: 0 to 55°C (32 to 131°F) Storage: -25 to 70°C (-13 to 158°F)

Power:

Consumption: 1.5W typical, 2.5W max. Range: 9 to 30VDC

Terminations and Wire:

Screw terminals for 12-22 AWG. Use twisted pair for output and power connections.

Weight:

0.54 lbs

Agency Approvals:

CSA certified per standard C22.2, No. 0-M91 and 142-M1987 (File No. LR42272) UL recognized per standard UL508 (File No.E99775) CE Conformance per EMC directive 2004/

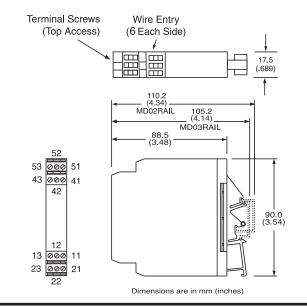
108/EC and Low Voltage directive 2006/ 95/EC.

RoHS Compliant

Ordering Information

Models & Accessories

Specify:


- 1. Model: G428-0001
- 2. Accessories: (see Accessories)
- 3. Optional Custom Factory Calibration; specify **C620** with desired input and output range.

Accessories

All SlimPak "G" series modules will mount on standard TS32 (model MD02) or TS35 (model MD03) DIN rail. In addition, the following accessories are available:

Heat Sink
TS35 x 7.5 DIN rail
24VDC Power Supply (0.5A)
24VDC Power Supply (1A)
24VDC Power Supply (2.3A)
End Bracket for MD03
I/O Descriptive Tag

Dimensions

Factory Assistance

For additional information on calibration, operation and installation contact our Technical Services Group:

703-724-7314

actionsupport@eurotherm.com

721-0652-00-I 09/06 Copyright© Eurotherm, Inc 2006

by Schneider Electric

Schneider Electric Systems USA, Inc.

44621 Guilford Drive, Suite 100 Ashburn, VA 20147 703-724-7300 info@eurotherm.com or www.eurotherm.com/actionio

.

Printed on recycled paper